Exam. Code: 107202 Subject Code: 1615

Bachelor of Computer Application (BCA) 2nd Semester NUMERICAL METHODS & STATISTICAL TECHNIQUES

Paper-III

Time Allowed—3 Hours] [Maximum Marks—75

Note:—Attempt FIVE questions in all, selecting at least
ONE question from each section. The fifth question
may be attempted from any section. All questions
carry equal marks.

SECTION-A

- 1. (a) Solve by false position method $x^3 + x 1 = 0$ correct to three decimal places. $7\frac{1}{2}$
 - (b) Using Newton Raphson formula, derive recurrence formula for \sqrt{N} . Hence evaluate $\sqrt{32}$. 7½
- (a) Solve the following system of equations by gauss elimination method:

$$2x + 4y - 6z = -8$$

 $x + 3y + z = 10$
 $2x - 4y - 2z = -1$ 7½

6663(2522)/IY-13947

(Contd.)

(b) Solve the following system of equations by gauss Jordan method:

$$x + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$ $7\frac{1}{2}$

SECTION-B

 (a) Using Newton forward difference formula, fit a polynomial of degree 3:

X	3	4	5	6
Y	6	24	60	120

71/2

(b) Using Newton divided difference formula, evaluate f(8):

X	4	5	7	10	11	13	
Y	48	100	294	900	1210	2028	

71/2

4. (a) Evaluate
$$\int_{0}^{6} \frac{dx}{1+x^2}$$
 take h = 1, using trapezoidal rule.

(b) Evaluate $\int_{3}^{5} \frac{4}{2+x^2} dx$ take n = 8, using Simpson

$$\frac{1}{3}$$
 rule. $7\frac{1}{2}$

6663(2522)/IY-13947

-

(Contd.)

SECTION-C

(a) Calculate median for the following data:

х	0-5	5-10	10-15	15-20	20-25	25-30	30-35
F	4	6 .	10	16	12	8	4

71/2

(b) Calculate Standard Deviation for the following data:

X	5-10	10-15	15-20	20-25	25-30	30-35
F	2	9	29	24	11	6

71/2

6. (a) Find Karl Pearson coefficient of correlation for the following data:

Ì	77	10	12	10	16	15	10	10	17	1
	X	10	12	18	10	13	19	10	17	
	Y	30	35	45	44	42	48	47	46	

71/2

(b) Calculate arithmetic mean for the following data:

X	100 - 120	120-140	140 - 160	160-180	180 – 200
F	4	6	10	8	5

71/2

SECTION-D

7. (a) Fit a straight line of form y = a + bx:

X	5	8	7	6	4
Y	3	4	5	2	1

71/2

(b) Fit a second-degree polynomial:

X	1.0	1.5	2.0	2.5	3.0
Y	1.1	1.3	1.6	2.0	3.4

71/2

(a) Fit a curve of type Y = aX^b for the following data:

X	1	2	3	4	5	6
Y	1200	900	600	200	110	50

71/2

(b) Fit a curve of type $Y = a + bX + cX^2$:

X	-3	-1	1	3
Y	15	5	1	5

71/2